Bernoulli inequality and hypergeometric functions
نویسندگان
چکیده
منابع مشابه
Hilbert Inequality and Gaussian Hypergeometric Functions
By using the integral representation of Gaussian hypergeometric function, we obtain Hilbert type inequalities with some fractional kernels and non-conjugate parameters. Such inequalities include the constant factors expressed in terms of hypergeometric functions. Further, we obtain the best possible constants for some general cases, in conjugate case.
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملMaclaurin’s Inequality and a Generalized Bernoulli Inequality
Maclaurin’s inequality is a natural, but nontrivial, generalization of the arithmetic-geometric mean inequality. We present a new proof that is based on an analogous generalization of Bernoulli’s inequality. Applications of Maclaurin’s inequality to iterative sequences and probability are discussed, along with a graph-theoretic version of the inequality.
متن کاملA Hypergeometric Inequality
A sequence of coefficients that appeared in the evaluation of a rational integral has been shown to be unimodal. The original proof is based on a inequality for hypergeometric functions. A generalization is presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2013
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2013-11781-8